منابع مشابه
Silicon Carbide for Novel Quantum Technology Devices
Silicon carbide (SiC) has recently been investigated as an alternative material to host deep optically active defects suitable for optical and spin quantum bits. This material presents a unique opportunity to realise more advanced quantum-based devices and sensors than currently possible. We will summarise key results revealing the role that defects have played in enabling optical and spin quan...
متن کاملQuantum decoherence dynamics of divacancy spins in silicon carbide
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find t...
متن کاملSilicon carbide microdisk resonator.
We demonstrate a silicon carbide (SiC) microdisk resonator with an intrinsic optical quality factor of 6.19×10(3), fabricated on the 3C-SiC-on-Si platform. We characterize the temperature dependence of the cavity resonance and obtain a thermo-optic coefficient of 2.92×10(-5)/K for 3C-SiC. Our simulations show that the device exhibits great potential for cavity optomechanical applications.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamental Research
سال: 2021
ISSN: 2667-3258
DOI: 10.1016/j.fmre.2020.11.004